← All Blogs

September 19, 2025

Building a Production-Ready Message Queue with Redis Streams and .NET

In modern distributed systems, reliable message processing is crucial. This tutorial demonstrates how to build a robust messaging system using Redis Streams, featuring consumer groups, exponential backoff retry logic, and dead letter queue handling.

Table of Contents

  1. Why Redis Streams?
  2. Architecture Overview
  3. Setting Up Redis
  4. Understanding Redis Streams Commands
  5. C# Implementation
  6. Running the Demo
  7. Best Practices

Why Redis Streams?

Redis Streams provide a powerful, lightweight alternative to traditional message queues like RabbitMQ or Kafka. Key advantages:

  • Low latency: In-memory data structure with microsecond response times
  • Consumer Groups: Built-in load balancing across multiple consumers
  • Persistence: Optional AOF/RDB persistence for durability
  • PEL (Pending Entries List): Automatic tracking of unacknowledged messages
  • Simple deployment: Single Redis instance, no complex cluster setup needed

When to Use Redis Streams

Good fit:

  • High-throughput, low-latency messaging
  • Event-driven microservices
  • Task queues with retry logic
  • Real-time data pipelines

Not ideal for:

  • Messages requiring strict ordering guarantees across partitions
  • Very large message payloads (> 1MB)
  • Messages that need to be retained for months/years

Architecture Overview

Our messaging system follows the Producer-Consumer pattern with these components:

┌─────────────┐         ┌──────────────┐
│  Publisher  │────────>│ Redis Stream │
└─────────────┘         └──────┬───────┘
                               │
                   ┌───────────┴──────────┐
                   │   Consumer Group     │
                   └───────────┬──────────┘
                               │
              ┌────────────────┼────────────────┐
              │                │                │
      ┌───────▼──────┐ ┌──────▼──────┐ ┌──────▼──────┐
      │ Consumer #1  │ │ Consumer #2 │ │ Consumer #3 │
      └───────┬──────┘ └──────┬──────┘ └──────┬──────┘
              │                │                │
      ┌───────▼──────┐ ┌──────▼──────┐ ┌──────▼──────┐
      │   Handler    │ │   Handler   │ │   Handler   │
      └──────────────┘ └─────────────┘ └─────────────┘
              │
              ▼
      [Complete] or [Retry]
              │
              ▼
      ┌──────────────┐
      │ Retry Queue  │ (Exponential Backoff)
      └──────────────┘

Key Concepts

  1. Stream: Append-only log of messages (like Kafka topic)
  2. Consumer Group: Distributes messages across multiple consumers
  3. PEL: Tracks messages that were delivered but not acknowledged
  4. XCLAIM: Reclaims messages from failed consumers
  5. Retry Queue: In-memory priority queue for exponential backoff

Setting Up Redis

1. Docker Compose Setup

Create a docker-compose.yml file:

version: '3.8'

services:
  redis:
    image: redis/redis-stack:latest
    container_name: redis-messaging-poc
    ports:
      - "6379:6379"      # Redis
      - "8001:8001"      # RedisInsight UI
    environment:
      - REDIS_ARGS=--appendonly yes
    volumes:
      - redis-data:/data
    networks:
      - messaging-net

  redis-commander:
    image: rediscommander/redis-commander:latest
    container_name: redis-commander
    environment:
      - REDIS_HOSTS=local:redis:6379
    ports:
      - "8081:8081"
    depends_on:
      - redis
    networks:
      - messaging-net

volumes:
  redis-data:

networks:
  messaging-net:
    driver: bridge

2. Start Redis

# PowerShell
cd docker
docker-compose up -d

# Verify it's running
docker ps

3. Access Redis Tools


Understanding Redis Streams Commands

Before diving into C# code, let's understand the Redis commands through hands-on examples.

Basic Message Flow

1. Publishing Messages (XADD)

# Add message to stream
XADD evt:product:order-service:{OrderCreated} * \
  meta-data '{"CreatedOn":"2024-02-13T10:00:00Z","Type":"OrderCreated"}' \
  data '{"OrderId":"ORD-001","Amount":100.00,"CustomerId":"CUST-123"}'

# Returns: "1707820800000-0" (timestamp-sequence)

Stream Key Format: evt:product:{serviceName}:{MessageType}

  • evt: Event type
  • product: Product/domain
  • order-service: Service name
  • {OrderCreated}: Message type

2. Creating Consumer Groups (XGROUP CREATE)

# Create consumer group (MKSTREAM creates stream if doesn't exist)
XGROUP CREATE evt:product:order-service:{OrderCreated} \
  order-processors $ MKSTREAM

# $ means "start from new messages"
# 0 means "start from beginning of stream"

3. Reading Messages (XREADGROUP)

# Consumer reads messages
XREADGROUP GROUP order-processors consumer-1 \
  COUNT 10 BLOCK 1000 STREAMS \
  evt:product:order-service:{OrderCreated} >

# > means "only new messages"
# Returns array of [stream, [[messageId, [field, value, ...]]]]

Response Example:

1) 1) "evt:product:order-service:{OrderCreated}"
   2) 1) 1) "1707820800000-0"
         2) 1) "meta-data"
            2) "{\"CreatedOn\":\"2024-02-13T10:00:00Z\",\"Type\":\"OrderCreated\"}"
            3) "data"
            4) "{\"OrderId\":\"ORD-001\",\"Amount\":100.00}"

4. Acknowledging Messages (XACK)

# Acknowledge successful processing
XACK evt:product:order-service:{OrderCreated} \
  order-processors 1707820800000-0

# Returns: (integer) 1 (number of messages acknowledged)

Retry Flow

5. Inspecting Pending Messages (XPENDING)

# View pending messages summary
XPENDING evt:product:order-service:{OrderCreated} order-processors

# View detailed pending messages
XPENDING evt:product:order-service:{OrderCreated} order-processors \
  - + 10 consumer-1

# Returns: [messageId, consumer, idleTime, deliveryCount]

Example Response:

1) 1) "1707820800000-0"
   2) "consumer-1"
   3) (integer) 5000      # 5 seconds idle
   4) (integer) 1         # Delivered once

6. Claiming Messages for Retry (XCLAIM)

# Claim message from another consumer or for retry
XCLAIM evt:product:order-service:{OrderCreated} \
  order-processors consumer-1 0 1707820800000-0

# 0 = minimum idle time (immediate claim)
# Returns the claimed message

7. Automatic Retry with XAUTOCLAIM (Redis 6.2+)

# Automatically claim idle messages
XAUTOCLAIM evt:product:order-service:{OrderCreated} \
  order-processors consumer-1 30000 0-0 COUNT 10

# 30000 = messages idle for 30+ seconds
# 0-0 = start from beginning
# Returns: [nextId, [messages], [deletedIds]]

Load Balancing vs Pub/Sub

Load Balancing (1 Consumer Group, Multiple Consumers):

# Each message goes to ONE consumer
XGROUP CREATE mystream workers $ MKSTREAM

XREADGROUP GROUP workers consumer-1 STREAMS mystream >  # Gets msg1
XREADGROUP GROUP workers consumer-2 STREAMS mystream >  # Gets msg2
XREADGROUP GROUP workers consumer-3 STREAMS mystream >  # Gets msg3

Pub/Sub (Multiple Consumer Groups):

# Each message goes to ALL groups
XGROUP CREATE mystream group-A $ MKSTREAM
XGROUP CREATE mystream group-B $ MKSTREAM

# Same message delivered to both groups
XREADGROUP GROUP group-A consumer-1 STREAMS mystream >  # Gets msg1
XREADGROUP GROUP group-B consumer-1 STREAMS mystream >  # Gets msg1 (copy)

C# Implementation

Now let's implement this in C#. Our POC consists of these layers:

SimplifiedMessaging/
├── Core/                  # Core abstractions
│   ├── HandlerResult.cs
│   ├── MessageContext.cs
│   ├── MessageMetadata.cs
│   ├── IMessageHandler.cs
│   ├── IRetryMessagePolicy.cs
│   └── DefaultRetryMessagePolicy.cs
├── Messages/              # Message definitions
│   ├── IMessage.cs
│   ├── OrderCreated.cs
│   └── PaymentProcessed.cs
├── Messaging/             # Infrastructure
│   ├── Publisher.cs
│   ├── Consumer.cs
│   ├── Subscription.cs
│   ├── StreamProcessor.cs
│   └── RetryQueue.cs
└── Handlers/              # Example handlers
    ├── OrderCreatedHandler.cs
    └── PaymentProcessedHandler.cs

1. Core Abstractions

HandlerResult.cs - Handler Return Values

namespace SimplifiedMessaging.Core;

public enum HandlerResult
{
    Complete = 0,  // Message processed successfully (XACK)
    Retry = 1      // Message failed, retry later (no XACK)
}

MessageContext.cs - Message Processing Context

namespace SimplifiedMessaging.Core;

public class MessageContext<T> where T : IMessage
{
    public MessageContext(string messageId, T data,
        MessageMetadata metadata, int retryAttempt = 0)
    {
        MessageId = messageId;
        Data = data;
        Metadata = metadata;
        RetryAttempt = retryAttempt;
    }

    public string MessageId { get; }           // Redis Stream ID
    public T Data { get; }                     // Actual message
    public MessageMetadata Metadata { get; }   // Type, correlation, etc.
    public int RetryAttempt { get; }           // Delivery count (0-based)
    public HandlerResult HandlerResult { get; set; }
    public DateTimeOffset? ScheduleRetryAfter { get; set; }

    /// <summary>
    /// Schedule a retry for specific time (e.g., fraud check after 1 hour)
    /// </summary>
    public HandlerResult ScheduleRetry(DateTimeOffset retryAfter)
    {
        if (retryAfter <= DateTimeOffset.UtcNow.AddSeconds(1))
        {
            throw new ArgumentException(
                "Retry time must be at least 1 second in the future");
        }

        ScheduleRetryAfter = retryAfter;
        return HandlerResult.Retry;
    }
}

DefaultRetryMessagePolicy.cs - Exponential Backoff

namespace SimplifiedMessaging.Core;

public class DefaultRetryMessagePolicy : IRetryMessagePolicy
{
    private readonly int _backoffExponent;
    private readonly DateTimeOffset _lastDelivered;

    public int DeliveryCount { get; }

    private DefaultRetryMessagePolicy(long idleTimeMs, long deliveryCount)
    {
        DeliveryCount = (int)deliveryCount;
        _lastDelivered = DateTimeOffset.UtcNow.AddMilliseconds(-idleTimeMs);

        // Exponential backoff: 2^deliveryCount seconds
        // Cap at 2^11 = 2048 seconds (~34 minutes)
        _backoffExponent = Math.Min(deliveryCount, 11);
    }

    public bool IsDueToBeProcessed(DateTimeOffset now)
    {
        var backoffInSeconds = 1 << _backoffExponent; // 2^exponent
        return now - _lastDelivered > TimeSpan.FromSeconds(backoffInSeconds);
    }

    public static IRetryMessagePolicy Create(long idleTimeMs, long deliveryCount)
    {
        return new DefaultRetryMessagePolicy(idleTimeMs, deliveryCount);
    }
}

Backoff Schedule:

  • Attempt 1: 2^1 = 2 seconds
  • Attempt 2: 2^2 = 4 seconds
  • Attempt 3: 2^3 = 8 seconds
  • Attempt 4: 2^4 = 16 seconds
  • ...
  • Attempt 11+: 2^11 = 2048 seconds (~34 minutes)

2. Message Definitions

IMessage.cs - Base Interface

namespace SimplifiedMessaging.Messages;

public interface IMessage
{
    string MessageType { get; }
}

OrderCreated.cs - Example Event

namespace SimplifiedMessaging.Messages;

public class OrderCreated : IMessage
{
    public string MessageType => nameof(OrderCreated);

    public string OrderId { get; set; } = string.Empty;
    public decimal Amount { get; set; }
    public string CustomerId { get; set; } = string.Empty;
}

3. Publisher - Publishing Messages

namespace SimplifiedMessaging.Messaging;

public class Publisher
{
    private readonly IConnectionMultiplexer _redis;

    public Publisher(IConnectionMultiplexer redis)
    {
        _redis = redis;
    }

    public async Task<string> PublishEventAsync<T>(
        string serviceName, T message) where T : IMessage
    {
        var streamKey = GetStreamKey(serviceName, message.MessageType);

        var metadata = new MessageMetadata
        {
            CreatedOn = DateTime.UtcNow,
            Type = typeof(T).FullName ?? message.MessageType
        };

        var db = _redis.GetDatabase();

        var streamEntries = new NameValueEntry[]
        {
            new("meta-data", JsonConvert.SerializeObject(metadata)),
            new("data", JsonConvert.SerializeObject(message))
        };

        // XADD command
        var messageId = await db.StreamAddAsync(streamKey, streamEntries);

        return messageId.ToString();
    }

    // Batch publish for efficiency
    public async Task<string[]> PublishEventBatchAsync<T>(
        string serviceName, IEnumerable<T> messages) where T : IMessage
    {
        var messagesList = messages.ToList();
        if (!messagesList.Any())
            return Array.Empty<string>();

        var streamKey = GetStreamKey(serviceName, messagesList.First().MessageType);
        var db = _redis.GetDatabase();
        var batch = db.CreateBatch();
        var tasks = new List<Task<RedisValue>>();

        foreach (var message in messagesList)
        {
            var metadata = new MessageMetadata
            {
                CreatedOn = DateTime.UtcNow,
                Type = typeof(T).FullName ?? message.MessageType
            };

            var streamEntries = new NameValueEntry[]
            {
                new("meta-data", JsonConvert.SerializeObject(metadata)),
                new("data", JsonConvert.SerializeObject(message))
            };

            tasks.Add(batch.StreamAddAsync(streamKey, streamEntries));
        }

        batch.Execute();
        var messageIds = await Task.WhenAll(tasks);

        return messageIds.Select(id => id.ToString()).ToArray();
    }

    private static string GetStreamKey(string serviceName, string messageType)
    {
        return $"evt:product:{serviceName}:{{{messageType}}}";
    }
}

4. RetryQueue - Priority Queue for Retries

namespace SimplifiedMessaging.Messaging;

public class RetryQueue
{
    private readonly SortedSet<RetryEntry> _queue =
        new(new RetryEntryComparer());
    private readonly object _lock = new();

    public void Enqueue(StreamPendingMessageInfo messageInfo,
        IRetryMessagePolicy policy)
    {
        lock (_lock)
        {
            var entry = new RetryEntry(messageInfo, policy);
            _queue.Add(entry);
        }
    }

    public StreamPendingMessageInfo? TryDequeue(DateTimeOffset now)
    {
        lock (_lock)
        {
            var entry = _queue.FirstOrDefault();

            if (entry == null)
                return null;

            // Only dequeue if retry time has passed
            if (!entry.Policy.IsDueToBeProcessed(now))
                return null;

            _queue.Remove(entry);
            return entry.MessageInfo;
        }
    }

    private record RetryEntry(
        StreamPendingMessageInfo MessageInfo,
        IRetryMessagePolicy Policy);

    // Sort by delivery count (lower first), then by message ID
    private class RetryEntryComparer : IComparer<RetryEntry>
    {
        public int Compare(RetryEntry? x, RetryEntry? y)
        {
            if (x == null && y == null) return 0;
            if (x == null) return -1;
            if (y == null) return 1;

            var deliveryCompare = x.Policy.DeliveryCount
                .CompareTo(y.Policy.DeliveryCount);

            if (deliveryCompare != 0)
                return deliveryCompare;

            return string.Compare(
                x.MessageInfo.MessageId.ToString(),
                y.MessageInfo.MessageId.ToString(),
                StringComparison.Ordinal);
        }
    }
}

5. StreamProcessor - The Core Engine

The StreamProcessor implements the Producer-Consumer pattern:

namespace SimplifiedMessaging.Messaging;

public class StreamProcessor
{
    private readonly IConnectionMultiplexer _redis;
    private readonly List<object> _subscriptions;
    private readonly Channel<MessageTask> _messageChannel;
    private const int MaxConcurrentMessages = 10;

    public void Start()
    {
        // Start one producer per subscription
        foreach (var subscription in _subscriptions)
        {
            Task.Run(() => ProduceAsync(subscription, _cts.Token));
        }

        // Start single consumer
        Task.Run(() => ConsumeAsync(_cts.Token));
    }

    private async Task ProduceAsync(
        object subscription, CancellationToken cancellationToken)
    {
        while (!cancellationToken.IsCancellationRequested)
        {
            // 1. Check scheduled retry queue
            await CheckScheduledRetryQueueAsync(...);

            // 2. Check standard retry queue
            await CheckRetryQueueAsync(...);

            // 3. Poll Redis with XREADGROUP
            var results = await db.StreamReadGroupAsync(
                streamKey, consumerGroupName, consumerName,
                lastMessageId: ">", count: 10
            );

            // 4. Push messages to channel
            foreach (var streamEntry in results)
            {
                await _messageChannel.Writer.WriteAsync(
                    new MessageTask(subscription, streamEntry, 0));
            }

            await Task.Delay(100); // Prevent tight loop
        }
    }

    private async Task ConsumeAsync(CancellationToken cancellationToken)
    {
        var semaphore = new SemaphoreSlim(MaxConcurrentMessages);

        await foreach (var messageTask in
            _messageChannel.Reader.ReadAllAsync(cancellationToken))
        {
            await semaphore.WaitAsync();

            _ = Task.Run(async () =>
            {
                try
                {
                    await ProcessMessageAsync(messageTask);
                }
                finally
                {
                    semaphore.Release();
                }
            });
        }
    }
}

6. Example Handler - Processing Logic

namespace SimplifiedMessaging.Handlers;

public class OrderCreatedHandler : IMessageHandler<OrderCreated>
{
    public Task<HandlerResult> HandleAsync(
        MessageContext<OrderCreated> context,
        CancellationToken cancellationToken)
    {
        var order = context.Data;

        // Invalid order - retry with exponential backoff
        if (order.Amount < 0)
        {
            Console.WriteLine("Invalid amount, will retry");
            return Task.FromResult(HandlerResult.Retry);
        }

        // High-value order - schedule retry for manual review
        if (order.Amount > 1000 && context.RetryAttempt == 0)
        {
            Console.WriteLine("High-value order, scheduling review in 1 minute");
            return Task.FromResult(
                context.ScheduleRetry(DateTimeOffset.UtcNow.AddMinutes(1))
            );
        }

        // Success
        Console.WriteLine($"Order {order.OrderId} processed successfully!");
        return Task.FromResult(HandlerResult.Complete);
    }
}

7. Consumer - Putting It All Together

namespace SimplifiedMessaging.Messaging;

public class Consumer
{
    private readonly IConnectionMultiplexer _redis;
    private readonly IServiceProvider _serviceProvider;
    private readonly List<object> _subscriptions = new();

    public Consumer Subscribe<TMessage, THandler>(
        string serviceName,
        string consumerGroupName,
        int handlerTimeoutMs = 30000)
        where TMessage : IMessage
        where THandler : IMessageHandler<TMessage>
    {
        var subscription = new Subscription<TMessage>(
            typeof(THandler),
            GetStreamKey(serviceName, typeof(TMessage).Name),
            consumerGroupName,
            handlerTimeoutMs,
            _serviceProvider
        );

        _subscriptions.Add(subscription);
        return this;
    }

    public async Task StartAsync()
    {
        await EnsureConsumerGroupsExistAsync();

        _processor = new StreamProcessor(_redis, _subscriptions);
        _processor.Start();
    }

    private async Task EnsureConsumerGroupsExistAsync()
    {
        var db = _redis.GetDatabase();

        foreach (var subscription in _subscriptions)
        {
            await db.StreamCreateConsumerGroupAsync(
                streamKey, consumerGroupName,
                StreamPosition.NewMessages, createStream: true
            );
        }
    }
}

Running the Demo

1. Start Redis

cd POC-Learning/docker
docker-compose up -d

2. Restore Packages and Build

cd ../SimplifiedMessaging
dotnet restore
dotnet build

3. Run the Application

dotnet run --project SimplifiedMessaging

4. Expected Output

╔════════════════════════════════════════════════════════╗
║   SimplifiedMessaging POC - Redis Streams Demo        ║
╚════════════════════════════════════════════════════════╝

🔌 Connecting to Redis...
✅ Connected to Redis

🔧 Setting up Dependency Injection...
✅ DI configured

📋 Setting up Consumer subscriptions...
📝 Subscribed to evt:product:order-service:{OrderCreated}
📝 Subscribed to evt:product:payment-service:{PaymentProcessed}

🔧 Ensuring consumer groups exist...
✅ Created consumer group 'order-processors'
✅ Created consumer group 'payment-processors'

🚀 Starting StreamProcessor...
✅ Started 2 producers and 1 consumer

╔════════════════════════════════════════════════════════╗
║   Publishing Test Messages                            ║
╚════════════════════════════════════════════════════════╝

📤 Publishing: Normal order ($50)
📤 Publishing: Medium order ($750 - will retry)
📤 Publishing: High-value order ($1500 - scheduled retry)

📦 OrderCreatedHandler Processing:
   Order ID: ORD-001
   Amount: $50
   ✅ Order processed successfully!

📦 OrderCreatedHandler Processing:
   Order ID: ORD-002
   Amount: $750
   🔄 Medium order needs review, will retry

📦 OrderCreatedHandler Processing:
   Order ID: ORD-003
   Amount: $1500
   ⏰ High-value order, scheduling review in 1 minute

✅ Message 1707820800000-0 completed and acknowledged
🔄 Message 1707820800001-0 queued for retry (attempt 1)
🔄 Message 1707820800002-0 queued for retry (attempt 1)

5. Explore with Redis Tools

RedisInsight (http://localhost:8001):

  • View streams visually
  • Inspect consumer groups
  • See pending messages in PEL

Redis CLI:

docker exec -it redis-messaging-poc redis-cli

# View stream length
XLEN evt:product:order-service:{OrderCreated}

# View consumer groups
XINFO GROUPS evt:product:order-service:{OrderCreated}

# View pending messages
XPENDING evt:product:order-service:{OrderCreated} order-processors

Best Practices

1. Message Retention

Redis Streams can grow indefinitely. Implement trimming:

// Trim to max length
await db.StreamTrimAsync(streamKey, maxLength: 10000);

// Trim by age (requires Redis 6.2+)
await db.StreamTrimAsync(streamKey,
    maxLength: 0,
    useApproximateMaxLength: true);

2. Dead Letter Queue

After N retries, move to DLQ:

if (context.RetryAttempt >= 5)
{
    await _publisher.PublishEventAsync("dlq-service", new DeadLetter
    {
        OriginalMessage = context.Data,
        Reason = "Max retries exceeded",
        RetryCount = context.RetryAttempt
    });

    return HandlerResult.Complete; // Remove from PEL
}

3. Idempotency

Always design handlers to be idempotent:

public async Task<HandlerResult> HandleAsync(
    MessageContext<OrderCreated> context, CancellationToken ct)
{
    var order = context.Data;

    // Check if already processed
    if (await _db.OrderExistsAsync(order.OrderId))
    {
        Console.WriteLine("Order already processed, skipping");
        return HandlerResult.Complete;
    }

    // Process...
    await _db.CreateOrderAsync(order);
    return HandlerResult.Complete;
}

4. Monitoring

Key metrics to track:

  • PEL size: XPENDING count per consumer group
  • Lag: Difference between latest message ID and last consumed
  • Retry rate: Messages returning to retry queue
  • Processing time: Handler execution duration
// Example metrics
var pending = await db.StreamPendingAsync(streamKey, consumerGroupName);
Console.WriteLine($"PEL size: {pending.Length}");
Console.WriteLine($"Oldest pending: {pending.OldestPendingMessageId}");

5. Graceful Shutdown

Ensure clean shutdown to avoid message loss:

Console.CancelKeyPress += async (sender, e) =>
{
    e.Cancel = true;

    // 1. Stop accepting new messages
    cts.Cancel();

    // 2. Wait for in-flight messages
    await consumer.StopAsync();

    // 3. Optionally claim to "Abandoned" consumer
    await ClaimToAbandonedConsumerAsync();

    // 4. Close Redis connection
    await redis.CloseAsync();
};

6. Error Handling Strategies

Transient Errors (network timeout, DB deadlock):

if (ex is TimeoutException || ex is DbDeadlockException)
{
    return HandlerResult.Retry; // Exponential backoff
}

Permanent Errors (validation, business rule):

if (ex is ValidationException)
{
    await LogErrorAsync(context, ex);
    return HandlerResult.Complete; // Don't retry
}

Scheduled Retry (external service unavailable):

if (ex is HttpRequestException)
{
    // Retry in 5 minutes
    return context.ScheduleRetry(DateTimeOffset.UtcNow.AddMinutes(5));
}

Conclusion

You've now built a production-ready messaging system with:

Reliable delivery: Consumer groups + PEL ✅ Retry logic: Exponential backoff + scheduled retries ✅ Load balancing: Multiple consumers per group ✅ Observability: RedisInsight + CLI tools ✅ Scalability: Horizontal scaling via consumer groups

Next Steps

  1. Add persistence: Enable AOF/RDB in Redis
  2. Implement DLQ: Move failed messages after max retries
  3. Add telemetry: Integrate with OpenTelemetry
  4. Scale horizontally: Run multiple consumer instances
  5. Add circuit breaker: Prevent cascade failures

Resources


Peace... 🍀

Tech Innovation Hub
Modern Software Architecture

Exploring cutting-edge technologies and architectural patterns that drive innovation in software development.

Projects

© 2025 Tech Innovation Hub. Built with Gatsby and modern web technologies.